ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08597
52
7
v1v2v3v4v5 (latest)

Robust Learning Rate Selection for Stochastic Optimization via Splitting Diagnostic

18 October 2019
Matteo Sordello
Niccolò Dalmasso
ArXiv (abs)PDFHTML
Abstract

This paper proposes SplitSGD, a new stochastic optimization algorithm with a dynamic learning rate selection rule. This procedure decreases the learning rate for better adaptation to the local geometry of the objective function whenever a stationary phase is detected, that is, the iterates are likely to bounce around a vicinity of a local minimum. The detection is performed by splitting the single thread into two and using the inner products of the gradients from the two threads as a measure of stationarity. This learning rate selection is provably valid, robust to initial parameters, easy-to-implement, and essentially does not incur additional computational cost. Finally, we illustrate the robust convergence properties of SplitSGD through extensive experiments.

View on arXiv
Comments on this paper