ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08974
163
60
v1v2v3v4 (latest)

Mitigating Overfitting in Supervised Classification from Two Unlabeled Datasets: A Consistent Risk Correction Approach

20 October 2019
Nan Lu
Tianyi Zhang
Gang Niu
Masashi Sugiyama
ArXiv (abs)PDFHTML
Abstract

The recently proposed unlabeled-unlabeled (UU) classification method allows us to train a binary classifier only from two unlabeled datasets with different class priors. Since this method is based on the empirical risk minimization, it works as if it is a supervised classification method, compatible with any model and optimizer. However, this method sometimes suffers from severe overfitting, which we would like to prevent in this paper. Our empirical finding in applying the original UU method is that overfitting often co-occurs with the empirical risk going negative, which is not legitimate. Therefore, we propose to wrap the terms that cause a negative empirical risk by certain correction functions. Then, we prove the consistency of the corrected risk estimator and derive an estimation error bound for the corrected risk minimizer. Experiments show that our proposal can successfully mitigate overfitting of the UU method and significantly improve the classification accuracy.

View on arXiv
Comments on this paper