ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09093
11
9

All-Action Policy Gradient Methods: A Numerical Integration Approach

21 October 2019
Benjamin Petit
Loren Amdahl-Culleton
Yao Liu
Jimmy T.H. Smith
Pierre-Luc Bacon
ArXivPDFHTML
Abstract

While often stated as an instance of the likelihood ratio trick [Rubinstein, 1989], the original policy gradient theorem [Sutton, 1999] involves an integral over the action space. When this integral can be computed, the resulting "all-action" estimator [Sutton, 2001] provides a conditioning effect [Bratley, 1987] reducing the variance significantly compared to the REINFORCE estimator [Williams, 1992]. In this paper, we adopt a numerical integration perspective to broaden the applicability of the all-action estimator to general spaces and to any function class for the policy or critic components, beyond the Gaussian case considered by [Ciosek, 2018]. In addition, we provide a new theoretical result on the effect of using a biased critic which offers more guidance than the previous "compatible features" condition of [Sutton, 1999]. We demonstrate the benefit of our approach in continuous control tasks with nonlinear function approximation. Our results show improved performance and sample efficiency.

View on arXiv
Comments on this paper