ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10077
14
34

Optimizing electrode positions in 2D Electrical Impedance Tomography using deep learning

21 October 2019
D. Smyl
Dong Liu
ArXivPDFHTML
Abstract

Electrical Impedance Tomography (EIT) is a powerful tool for non-destructive evaluation, state estimation, and process tomography - among numerous other use cases. For these applications, and in order to reliably reconstruct images of a given process using EIT, we must obtain high-quality voltage measurements from the target of interest. As such, it is obvious that the locations of electrodes used for measuring plays a key role in this task. Yet, to date, methods for optimally placing electrodes either require knowledge on the EIT target (which is, in practice, never fully known) or are computationally difficult to implement numerically. In this paper, we circumvent these challenges and present a straightforward deep learning based approach for optimizing electrodes positions. It is found that the optimized electrode positions outperformed "standard" uniformly-distributed electrode layouts in all test cases. Further, it is found that the use of optimized electrode positions computed using the approach derived herein can reduce errors in EIT reconstructions as well as improve the distinguishability of EIT measurements.

View on arXiv
Comments on this paper