ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10362
84
114
v1v2v3 (latest)

Strategic Adaptation to Classifiers: A Causal Perspective

23 October 2019
John Miller
S. Milli
Moritz Hardt
ArXiv (abs)PDFHTML
Abstract

Consequential decision-making incentivizes individuals to adapt their behavior to the specifics of the decision rule. A long line of work has therefore sought to understand and anticipate adaptation, both to prevent strategic individuals from "gaming" the decision rule and to explicitly motivate individuals to improve. In this work, we frame the problem of adaptation as performing interventions in a causal graph. With this causal perspective, we make several contributions. First, we articulate a formal distinction between gaming and improvement. Second, we formalize strategic classification in a new way that recognizes that the individual may improve, rather than only game. In this setting, we show that it is beneficial for the decision-maker to incentivize improvement. Third, we give a reduction from causal inference to designing incentivizes for improvement. This shows that designing good incentives, while desirable, is at least as hard as causal inference.

View on arXiv
Comments on this paper