ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10702
14
58

Deep learning enabled laser speckle wavemeter with a high dynamic range

22 October 2019
Roopam K. Gupta
G. Bruce
S. Powis
Kishan Dholakia
ArXivPDFHTML
Abstract

The speckle pattern produced when a laser is scattered by a disordered medium has recently been shown to give a surprisingly accurate or broadband measurement of wavelength. Here it is shown that deep learning is an ideal approach to analyse wavelength variations using a speckle wavemeter due to its ability to identify trends and overcome low signal to noise ratio in complex datasets. This combination enables wavelength measurement at high precision over a broad operating range in a single step, with a remarkable capability to reject instrumental and environmental noise, which has not been possible with previous approaches. It is demonstrated that the noise rejection capabilities of deep learning provide attometre-scale wavelength precision over an operating range from 488 nm to 976 nm. This dynamic range is six orders of magnitude beyond the state of the art.

View on arXiv
Comments on this paper