ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.11491
12
18

Attention Optimization for Abstractive Document Summarization

25 October 2019
Min Gui
Junfeng Tian
Rui Wang
Zhenglu Yang
ArXivPDFHTML
Abstract

Attention plays a key role in the improvement of sequence-to-sequence-based document summarization models. To obtain a powerful attention helping with reproducing the most salient information and avoiding repetitions, we augment the vanilla attention model from both local and global aspects. We propose an attention refinement unit paired with local variance loss to impose supervision on the attention model at each decoding step, and a global variance loss to optimize the attention distributions of all decoding steps from the global perspective. The performances on the CNN/Daily Mail dataset verify the effectiveness of our methods.

View on arXiv
Comments on this paper