ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.11764
9
3

ClsGAN: Selective Attribute Editing Model Based On Classification Adversarial Network

25 October 2019
Liu Ying
Heng Fan
Fuchuan Ni
Jinhai Xiang
    GAN
ArXivPDFHTML
Abstract

Attribution editing has achieved remarkable progress in recent years owing to the encoder-decoder structure and generative adversarial network (GAN). However, it remains challenging in generating high-quality images with accurate attribute transformation. Attacking these problems, the work proposes a novel selective attribute editing model based on classification adversarial network (referred to as ClsGAN) that shows good balance between attribute transfer accuracy and photo-realistic images. Considering that the editing images are prone to be affected by original attribute due to skip-connection in encoder-decoder structure, an upper convolution residual network (referred to as Tr-resnet) is presented to selectively extract information from the source image and target label. In addition, to further improve the transfer accuracy of generated images, an attribute adversarial classifier (referred to as Atta-cls) is introduced to guide the generator from the perspective of attribute through learning the defects of attribute transfer images. Experimental results on CelebA demonstrate that our ClsGAN performs favorably against state-of-the-art approaches in image quality and transfer accuracy. Moreover, ablation studies are also designed to verify the great performance of Tr-resnet and Atta-cls.

View on arXiv
Comments on this paper