ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13466
10
23

Ordered Memory

29 October 2019
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
Alessandro Sordoni
Aaron Courville
ArXivPDFHTML
Abstract

Stack-augmented recurrent neural networks (RNNs) have been of interest to the deep learning community for some time. However, the difficulty of training memory models remains a problem obstructing the widespread use of such models. In this paper, we propose the Ordered Memory architecture. Inspired by Ordered Neurons (Shen et al., 2018), we introduce a new attention-based mechanism and use its cumulative probability to control the writing and erasing operation of the memory. We also introduce a new Gated Recursive Cell to compose lower-level representations into higher-level representation. We demonstrate that our model achieves strong performance on the logical inference task (Bowman et al., 2015)and the ListOps (Nangia and Bowman, 2018) task. We can also interpret the model to retrieve the induced tree structure, and find that these induced structures align with the ground truth. Finally, we evaluate our model on the Stanford SentimentTreebank tasks (Socher et al., 2013), and find that it performs comparatively with the state-of-the-art methods in the literature.

View on arXiv
Comments on this paper