ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13646
11
49

C3DVQA: Full-Reference Video Quality Assessment with 3D Convolutional Neural Network

30 October 2019
Munan Xu
Junming Chen
Haiqiang Wang
Shan Liu
Ge Li
Zhiqiang Bai
ArXivPDFHTML
Abstract

Traditional video quality assessment (VQA) methods evaluate localized picture quality and video score is predicted by temporally aggregating frame scores. However, video quality exhibits different characteristics from static image quality due to the existence of temporal masking effects. In this paper, we present a novel architecture, namely C3DVQA, that uses Convolutional Neural Network with 3D kernels (C3D) for full-reference VQA task. C3DVQA combines feature learning and score pooling into one spatiotemporal feature learning process. We use 2D convolutional layers to extract spatial features and 3D convolutional layers to learn spatiotemporal features. We empirically found that 3D convolutional layers are capable to capture temporal masking effects of videos. We evaluated the proposed method on the LIVE and CSIQ datasets. The experimental results demonstrate that the proposed method achieves the state-of-the-art performance.

View on arXiv
Comments on this paper