ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.14322
14
183

Multi-resolution CSI Feedback with deep learning in Massive MIMO System

31 October 2019
Zhilin Lu
Jintao Wang
Jian Song
ArXivPDFHTML
Abstract

In massive multiple-input multiple-output (MIMO) system, user equipment (UE) needs to send downlink channel state information (CSI) back to base station (BS). However, the feedback becomes expensive with the growing complexity of CSI in massive MIMO system. Recently, deep learning (DL) approaches are used to improve the reconstruction efficiency of CSI feedback. In this paper, a novel feedback network named CRNet is proposed to achieve better performance via extracting CSI features on multiple resolutions. An advanced training scheme that further boosts the network performance is also introduced. Simulation results show that the proposed CRNet outperforms the state-of-the-art CsiNet under the same computational complexity without any extra information. The open source codes are available at https://github.com/Kylin9511/CRNet

View on arXiv
Comments on this paper