ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01004
18
37

Why Non-myopic Bayesian Optimization is Promising and How Far Should We Look-ahead? A Study via Rollout

4 November 2019
Xubo Yue
Raed Al Kontar
ArXivPDFHTML
Abstract

Lookahead, also known as non-myopic, Bayesian optimization (BO) aims to find optimal sampling policies through solving a dynamic program (DP) that maximizes a long-term reward over a rolling horizon. Though promising, lookahead BO faces the risk of error propagation through its increased dependence on a possibly mis-specified model. In this work we focus on the rollout approximation for solving the intractable DP. We first prove the improving nature of rollout in tackling lookahead BO and provide a sufficient condition for the used heuristic to be rollout improving. We then provide both a theoretical and practical guideline to decide on the rolling horizon stagewise. This guideline is built on quantifying the negative effect of a mis-specified model. To illustrate our idea, we provide case studies on both single and multi-information source BO. Empirical results show the advantageous properties of our method over several myopic and non-myopic BO algorithms.

View on arXiv
Comments on this paper