ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01208
68
10
v1v2v3v4v5 (latest)

Higher Criticism for Discriminating Word-Frequency Tables and Testing Authorship

30 October 2019
A. Kipnis
ArXiv (abs)PDFHTML
Abstract

We adapt the Higher Criticism (HC) goodness-of-fit test to measure closeness between word-frequency tables. We apply this measure to authorship attribution challenges, where the goal is to identify the author of a document using other documents whose authorship is known. The method is simple yet performs well without handcrafting and tuning; reporting accuracy at the state of the art level in various current challenges. As an inherent side effect, the HC calculation identifies a subset of discriminating words. In practice, the identified words have low variance across documents belonging to a corpus of homogeneous authorship. We conclude that in comparing the similarity of a new document and a corpus of a single author, HC is mostly affected by words characteristic of the author and is relatively unaffected by topic structure.

View on arXiv
Comments on this paper