ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02723
11
10

Option Compatible Reward Inverse Reinforcement Learning

7 November 2019
Rakhoon Hwang
HanJin Lee
H. Hwang
ArXivPDFHTML
Abstract

Reinforcement learning in complex environments is a challenging problem. In particular, the success of reinforcement learning algorithms depends on a well-designed reward function. Inverse reinforcement learning (IRL) solves the problem of recovering reward functions from expert demonstrations. In this paper, we solve a hierarchical inverse reinforcement learning problem within the options framework, which allows us to utilize intrinsic motivation of the expert demonstrations. A gradient method for parametrized options is used to deduce a defining equation for the Q-feature space, which leads to a reward feature space. Using a second-order optimality condition for option parameters, an optimal reward function is selected. Experimental results in both discrete and continuous domains confirm that our recovered rewards provide a solution to the IRL problem using temporal abstraction, which in turn are effective in accelerating transfer learning tasks. We also show that our method is robust to noises contained in expert demonstrations.

View on arXiv
Comments on this paper