ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.03598
25
22

Interactive Classification by Asking Informative Questions

9 November 2019
L. Yu
Howard Chen
Sida Wang
Tao Lei
Yoav Artzi
ArXivPDFHTML
Abstract

We study the potential for interaction in natural language classification. We add a limited form of interaction for intent classification, where users provide an initial query using natural language, and the system asks for additional information using binary or multi-choice questions. At each turn, our system decides between asking the most informative question or making the final classification prediction.The simplicity of the model allows for bootstrapping of the system without interaction data, instead relying on simple crowdsourcing tasks. We evaluate our approach on two domains, showing the benefit of interaction and the advantage of learning to balance between asking additional questions and making the final prediction.

View on arXiv
Comments on this paper