ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.03630
11
2

Action Recognition Using Supervised Spiking Neural Networks

9 November 2019
Aref Moqadam Mehr
Saeed Reza Kheradpisheh
H. Farahani
ArXivPDFHTML
Abstract

Biological neurons use spikes to process and learn temporally dynamic inputs in an energy and computationally efficient way. However, applying the state-of-the-art gradient-based supervised algorithms to spiking neural networks (SNN) is a challenge due to the non-differentiability of the activation function of spiking neurons. Employing surrogate gradients is one of the main solutions to overcome this challenge. Although SNNs naturally work in the temporal domain, recent studies have focused on developing SNNs to solve static image categorization tasks. In this paper, we employ a surrogate gradient descent learning algorithm to recognize twelve human hand gestures recorded by dynamic vision sensor (DVS) cameras. The proposed SNN could reach 97.2% recognition accuracy on test data.

View on arXiv
Comments on this paper