ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.04660
22
0

Random Projections of Mel-Spectrograms as Low-Level Features for Automatic Music Genre Classification

12 November 2019
J. Foleiss
Tiago Tavares
    VLM
ArXiv (abs)PDFHTML
Abstract

In this work, we analyse the random projections of Mel-spectrograms as low-level features for music genre classification. This approach was compared to handcrafted features, features learned using an auto-encoder and features obtained from a transfer learning setting. Tests in five different well-known, publicly available datasets show that random projections leads to results comparable to learned features and outperforms features obtained via transfer learning in a shallow learning scenario. Random projections do not require using extensive specialist knowledge and, simultaneously, requires less computational power for training than other projection-based low-level features. Therefore, they can be are a viable choice for usage in shallow learning content-based music genre classification.

View on arXiv
Comments on this paper