ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.04997
19
23

Character-based NMT with Transformer

12 November 2019
Rohit Gupta
Laurent Besacier
Marc Dymetman
Matthias Gallé
ArXivPDFHTML
Abstract

Character-based translation has several appealing advantages, but its performance is in general worse than a carefully tuned BPE baseline. In this paper we study the impact of character-based input and output with the Transformer architecture. In particular, our experiments on EN-DE show that character-based Transformer models are more robust than their BPE counterpart, both when translating noisy text, and when translating text from a different domain. To obtain comparable BLEU scores in clean, in-domain data and close the gap with BPE-based models we use known techniques to train deeper Transformer models.

View on arXiv
Comments on this paper