ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07344
53
27

ELoPE: Fine-Grained Visual Classification with Efficient Localization, Pooling and Embedding

17 November 2019
Harald Hanselmann
Hermann Ney
ArXiv (abs)PDFHTML
Abstract

The task of fine-grained visual classification (FGVC) deals with classification problems that display a small inter-class variance such as distinguishing between different bird species or car models. State-of-the-art approaches typically tackle this problem by integrating an elaborate attention mechanism or (part-) localization method into a standard convolutional neural network (CNN). Also in this work the aim is to enhance the performance of a backbone CNN such as ResNet by including three efficient and lightweight components specifically designed for FGVC. This is achieved by using global k-max pooling, a discriminative embedding layer trained by optimizing class means and an efficient bounding box estimator that only needs class labels for training. The resulting model achieves new best state-of-the-art recognition accuracies on the Stanford cars and FGVC-Aircraft datasets.

View on arXiv
Comments on this paper