ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07538
16
11

Finding Missing Children: Aging Deep Face Features

18 November 2019
Debayan Deb
Divyansh Aggarwal
Anil K. Jain
    CVBM
ArXivPDFHTML
Abstract

Given a gallery of face images of missing children, state-of-the-art face recognition systems fall short in identifying a child (probe) recovered at a later age. We propose an age-progression module that can age-progress deep face features output by any commodity face matcher. For time lapses larger than 10 years (the missing child is found after 10 or more years), the proposed age-progression module improves the closed-set identification accuracy of FaceNet from 40% to 49.56% and CosFace from 56.88% to 61.25% on a child celebrity dataset, namely ITWCC. The proposed method also outperforms state-of-the-art approaches with a rank-1 identification rate from 94.91% to 95.91% on a public aging dataset, FG-NET, and from 99.50% to 99.58% on CACD-VS. These results suggest that aging face features enhances the ability to identify young children who are possible victims of child trafficking or abduction.

View on arXiv
Comments on this paper