ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08192
17
19

Information-Theoretic Local Minima Characterization and Regularization

19 November 2019
Zhiwei Jia
Hao Su
ArXivPDFHTML
Abstract

Recent advances in deep learning theory have evoked the study of generalizability across different local minima of deep neural networks (DNNs). While current work focused on either discovering properties of good local minima or developing regularization techniques to induce good local minima, no approach exists that can tackle both problems. We achieve these two goals successfully in a unified manner. Specifically, based on the observed Fisher information we propose a metric both strongly indicative of generalizability of local minima and effectively applied as a practical regularizer. We provide theoretical analysis including a generalization bound and empirically demonstrate the success of our approach in both capturing and improving the generalizability of DNNs. Experiments are performed on CIFAR-10, CIFAR-100 and ImageNet for various network architectures.

View on arXiv
Comments on this paper