ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08606
6
9

CoopNet: Cooperative Convolutional Neural Network for Low-Power MCUs

19 November 2019
Luca Mocerino
A. Calimera
    MQ
ArXivPDFHTML
Abstract

Fixed-point quantization and binarization are two reduction methods adopted to deploy Convolutional Neural Networks (CNN) on end-nodes powered by low-power micro-controller units (MCUs). While most of the existing works use them as stand-alone optimizations, this work aims at demonstrating there is margin for a joint cooperation that leads to inferential engines with lower latency and higher accuracy. Called CoopNet, the proposed heterogeneous model is conceived, implemented and tested on off-the-shelf MCUs with small on-chip memory and few computational resources. Experimental results conducted on three different CNNs using as test-bench the low-power RISC core of the Cortex-M family by ARM validate the CoopNet proposal by showing substantial improvements w.r.t. designs where quantization and binarization are applied separately.

View on arXiv
Comments on this paper