ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08716
11
98

DermGAN: Synthetic Generation of Clinical Skin Images with Pathology

20 November 2019
Amirata Ghorbani
Vivek Natarajan
David Coz
Yuan Liu
    GAN
    MedIm
ArXivPDFHTML
Abstract

Despite the recent success in applying supervised deep learning to medical imaging tasks, the problem of obtaining large and diverse expert-annotated datasets required for the development of high performant models remains particularly challenging. In this work, we explore the possibility of using Generative Adverserial Networks (GAN) to synthesize clinical images with skin condition. We propose DermGAN, an adaptation of the popular Pix2Pix architecture, to create synthetic images for a pre-specified skin condition while being able to vary its size, location and the underlying skin color. We demonstrate that the generated images are of high fidelity using objective GAN evaluation metrics. In a Human Turing test, we note that the synthetic images are not only visually similar to real images, but also embody the respective skin condition in dermatologists' eyes. Finally, when using the synthetic images as a data augmentation technique for training a skin condition classifier, we observe that the model performs comparably to the baseline model overall while improving on rare but malignant conditions.

View on arXiv
Comments on this paper