ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08966
14
53

Evaluating the Transferability and Adversarial Discrimination of Convolutional Neural Networks for Threat Object Detection and Classification within X-Ray Security Imagery

20 November 2019
Yona Falinie A. Gaus
Neelanjan Bhowmik
S. Akçay
T. Breckon
ArXivPDFHTML
Abstract

X-ray imagery security screening is essential to maintaining transport security against a varying profile of threat or prohibited items. Particular interest lies in the automatic detection and classification of weapons such as firearms and knives within complex and cluttered X-ray security imagery. Here, we address this problem by exploring various end-to-end object detection Convolutional Neural Network (CNN) architectures. We evaluate several leading variants spanning the Faster R-CNN, Mask R-CNN, and RetinaNet architectures to explore the transferability of such models between varying X-ray scanners with differing imaging geometries, image resolutions and material colour profiles. Whilst the limited availability of X-ray threat imagery can pose a challenge, we employ a transfer learning approach to evaluate whether such inter-scanner generalisation may exist over a multiple class detection problem. Overall, we achieve maximal detection performance using a Faster R-CNN architecture with a ResNet101_{101}101​ classification network, obtaining 0.88 and 0.86 of mean Average Precision (mAP) for a three-class and two class item from varying X-ray imaging sources. Our results exhibit a remarkable degree of generalisability in terms of cross-scanner performance (mAP: 0.87, firearm detection: 0.94 AP). In addition, we examine the inherent adversarial discriminative capability of such networks using a specifically generated adversarial dataset for firearms detection - with a variable low false positive, as low as 5%, this shows both the challenge and promise of such threat detection within X-ray security imagery.

View on arXiv
Comments on this paper