8
33

Neural Networks Learning and Memorization with (almost) no Over-Parameterization

Abstract

Many results in recent years established polynomial time learnability of various models via neural networks algorithms. However, unless the model is linear separable, or the activation is a polynomial, these results require very large networks -- much more than what is needed for the mere existence of a good predictor. In this paper we prove that SGD on depth two neural networks can memorize samples, learn polynomials with bounded weights, and learn certain kernel spaces, with near optimal network size, sample complexity, and runtime. In particular, we show that SGD on depth two network with O~(md)\tilde{O}\left(\frac{m}{d}\right) hidden neurons (and hence O~(m)\tilde{O}(m) parameters) can memorize mm random labeled points in Sd1\mathbb{S}^{d-1}.

View on arXiv
Comments on this paper