ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.09977
26
13

Artificial neural networks in action for an automated cell-type classification of biological neural networks

22 November 2019
Eirini Troullinou
G. Tsagkatakis
Spyridon Chavlis
G. Turi
Wen-Ke Li
A. Losonczy
P. Tsakalides
Panayiota Poirazi
ArXivPDFHTML
Abstract

Identification of different neuronal cell types is critical for understanding their contribution to brain functions. Yet, automated and reliable classification of neurons remains a challenge, primarily because of their biological complexity. Typical approaches include laborious and expensive immunohistochemical analysis while feature extraction algorithms based on cellular characteristics have recently been proposed. The former rely on molecular markers, which are often expressed in many cell types, while the latter suffer from similar issues: finding features that are distinctive for each class has proven to be equally challenging. Moreover, both approaches are time consuming and demand a lot of human intervention. In this work we establish the first, automated cell-type classification method that relies on neuronal activity rather than molecular or cellular features. We test our method on a real-world dataset comprising of raw calcium activity signals for four neuronal types. We compare the performance of three different deep learning models and demonstrate that our method can achieve automated classification of neuronal cell types with unprecedented accuracy.

View on arXiv
Comments on this paper