ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.09983
15
173

TreeGen: A Tree-Based Transformer Architecture for Code Generation

22 November 2019
Zeyu Sun
Qihao Zhu
Yingfei Xiong
Yican Sun
Lili Mou
Lu Zhang
ArXivPDFHTML
Abstract

A code generation system generates programming language code based on an input natural language description. State-of-the-art approaches rely on neural networks for code generation. However, these code generators suffer from two problems. One is the long dependency problem, where a code element often depends on another far-away code element. A variable reference, for example, depends on its definition, which may appear quite a few lines before. The other problem is structure modeling, as programs contain rich structural information. In this paper, we propose a novel tree-based neural architecture, TreeGen, for code generation. TreeGen uses the attention mechanism of Transformers to alleviate the long-dependency problem, and introduces a novel AST reader (encoder) to incorporate grammar rules and AST structures into the network. We evaluated TreeGen on a Python benchmark, HearthStone, and two semantic parsing benchmarks, ATIS and GEO. TreeGen outperformed the previous state-of-the-art approach by 4.5 percentage points on HearthStone, and achieved the best accuracy among neural network-based approaches on ATIS (89.1%) and GEO (89.6%). We also conducted an ablation test to better understand each component of our model.

View on arXiv
Comments on this paper