ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.10428
14
2

Constrained Linear Data-feature Mapping for Image Classification

23 November 2019
Juncai He
Yuyan Chen
Lian Zhang
Jinchao Xu
ArXivPDFHTML
Abstract

In this paper, we propose a constrained linear data-feature mapping model as an interpretable mathematical model for image classification using convolutional neural network (CNN) such as the ResNet. From this viewpoint, we establish the detailed connections in a technical level between the traditional iterative schemes for constrained linear system and the architecture for the basic blocks of ResNet. Under these connections, we propose some natural modifications of ResNet type models which will have less parameters but still maintain almost the same accuracy as these corresponding original models. Some numerical experiments are shown to demonstrate the validity of this constrained learning data-feature mapping assumption.

View on arXiv
Comments on this paper