ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.10434
26
2
v1v2 (latest)

Low Rank Approximation for Smoothing Spline via Eigensystem Truncation

23 November 2019
Danqing Xu
Yuedong Wang
ArXiv (abs)PDFHTML
Abstract

Smoothing splines provide a powerful and flexible means for nonparametric estimation and inference. With a cubic time complexity, fitting smoothing spline models to large data is computationally prohibitive. In this paper, we use the theoretical optimal eigenspace to derive a low rank approximation of the smoothing spline estimates. We develop a method to approximate the eigensystem when it is unknown and derive error bounds for the approximate estimates. The proposed methods are easy to implement with existing software. Extensive simulations show that the new methods are accurate, fast, and compares favorably against existing methods.

View on arXiv
Comments on this paper