ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.10558
62
5
v1v2v3 (latest)

Fast Polynomial Kernel Classification for Massive Data

24 November 2019
Jinshan Zeng
Minrun Wu
Shao-Bo Lin
Ding-Xuan Zhou
    TPM
ArXiv (abs)PDFHTML
Abstract

In the era of big data, it is highly desired to develop efficient machine learning algorithms to tackle massive data challenges such as storage bottleneck, algorithmic scalability, and interpretability. In this paper, we develop a novel efficient classification algorithm, called fast polynomial kernel classification (FPC), to conquer the scalability and storage challenges. Our main tools are a suitable selected feature mapping based on polynomial kernels and an alternating direction method of multipliers (ADMM) algorithm for a related non-smooth convex optimization problem. Fast learning rates as well as feasibility verifications including the convergence of ADMM and the selection of center points are established to justify theoretical behaviors of FPC. Our theoretical assertions are verified by a series of simulations and real data applications. The numerical results demonstrate that FPC significantly reduces the computational burden and storage memory of the existing learning schemes such as support vector machines and boosting, without sacrificing their generalization abilities much.

View on arXiv
Comments on this paper