ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.10807
250
8
v1v2v3 (latest)

Generalized Adaptation for Few-Shot Learning

25 November 2019
Liang Song
Jinlu Liu
Yongqiang Qin
    VLM
ArXiv (abs)PDFHTML
Abstract

Many Few-Shot Learning research works have two stages: pre-training base model and adapting to novel model. In this paper, we propose to use closed-form base learner, which constrains the adapting stage with pre-trained base model to get better generalized novel model. Following theoretical analysis proves its rationality as well as indication of how to train a well-generalized base model. We then conduct experiments on four benchmarks and achieve state-of-the-art performance in all cases. Notably, we achieve the accuracy of 87.75% on 5-shot miniImageNet which approximately outperforms existing methods by 10%.

View on arXiv
Comments on this paper