ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.10829
6
1

Neural Random Forest Imitation

25 November 2019
Christoph Reinders
Bodo Rosenhahn
ArXivPDFHTML
Abstract

We present Neural Random Forest Imitation - a novel approach for transforming random forests into neural networks. Existing methods propose a direct mapping and produce very inefficient architectures. In this work, we introduce an imitation learning approach by generating training data from a random forest and learning a neural network that imitates its behavior. This implicit transformation creates very efficient neural networks that learn the decision boundaries of a random forest. The generated model is differentiable, can be used as a warm start for fine-tuning, and enables end-to-end optimization. Experiments on several real-world benchmark datasets demonstrate superior performance, especially when training with very few training examples. Compared to state-of-the-art methods, we significantly reduce the number of network parameters while achieving the same or even improved accuracy due to better generalization.

View on arXiv
Comments on this paper