ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.11553
29
2

Learning sparse linear dynamic networks in a hyper-parameter free setting

26 November 2019
Arun Venkitaraman
H. Hjalmarsson
B. Wahlberg
ArXiv (abs)PDFHTML
Abstract

We address the issue of estimating the topology and dynamics of sparse linear dynamic networks in a hyperparameter-free setting. We propose a method to estimate the network dynamics in a computationally efficient and parameter tuning-free iterative framework known as SPICE (Sparse Iterative Covariance Estimation). The estimated dynamics directly reveal the underlying topology. Our approach does not assume that the network is undirected and is applicable even with varying noise levels across the modules of the network. We also do not assume any explicit prior knowledge on the network dynamics. Numerical experiments with realistic dynamic networks illustrate the usefulness of our method.

View on arXiv
Comments on this paper