ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.00315
11
2

Topic-aware chatbot using Recurrent Neural Networks and Nonnegative Matrix Factorization

1 December 2019
Yuchen Guo
Nicholas Hanoian
Zhexiao Lin
Nicholas Liskij
Hanbaek Lyu
Deanna Needell
Jiahao Qu
Henry Sojico
Yuliang Wang
Zhe Xiong
Zhenhong Zou
ArXivPDFHTML
Abstract

We propose a novel model for a topic-aware chatbot by combining the traditional Recurrent Neural Network (RNN) encoder-decoder model with a topic attention layer based on Nonnegative Matrix Factorization (NMF). After learning topic vectors from an auxiliary text corpus via NMF, the decoder is trained so that it is more likely to sample response words from the most correlated topic vectors. One of the main advantages in our architecture is that the user can easily switch the NMF-learned topic vectors so that the chatbot obtains desired topic-awareness. We demonstrate our model by training on a single conversational data set which is then augmented with topic matrices learned from different auxiliary data sets. We show that our topic-aware chatbot not only outperforms the non-topic counterpart, but also that each topic-aware model qualitatively and contextually gives the most relevant answer depending on the topic of question.

View on arXiv
Comments on this paper