ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.01167
22
15

High-quality Speech Synthesis Using Super-resolution Mel-Spectrogram

3 December 2019
Leyuan Sheng
Dong-Yan Huang
Evgeny Nikolaevich Pavlovskiy
ArXivPDFHTML
Abstract

In speech synthesis and speech enhancement systems, melspectrograms need to be precise in acoustic representations. However, the generated spectrograms are over-smooth, that could not produce high quality synthesized speech. Inspired by image-to-image translation, we address this problem by using a learning-based post filter combining Pix2PixHD and ResUnet to reconstruct the mel-spectrograms together with super-resolution. From the resulting super-resolution spectrogram networks, we can generate enhanced spectrograms to produce high quality synthesized speech. Our proposed model achieves improved mean opinion scores (MOS) of 3.71 and 4.01 over baseline results of 3.29 and 3.84, while using vocoder Griffin-Lim and WaveNet, respectively.

View on arXiv
Comments on this paper