ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.01810
14
4

Learning with Multiplicative Perturbations

4 December 2019
Xiulong Yang
Shihao Ji
    AAML
ArXivPDFHTML
Abstract

Adversarial Training (AT) and Virtual Adversarial Training (VAT) are the regularization techniques that train Deep Neural Networks (DNNs) with adversarial examples generated by adding small but worst-case perturbations to input examples. In this paper, we propose xAT and xVAT, new adversarial training algorithms, that generate \textbf{multiplicative} perturbations to input examples for robust training of DNNs. Such perturbations are much more perceptible and interpretable than their \textbf{additive} counterparts exploited by AT and VAT. Furthermore, the multiplicative perturbations can be generated transductively or inductively while the standard AT and VAT only support a transductive implementation. We conduct a series of experiments that analyze the behavior of the multiplicative perturbations and demonstrate that xAT and xVAT match or outperform state-of-the-art classification accuracies across multiple established benchmarks while being about 30\% faster than their additive counterparts. Furthermore, the resulting DNNs also demonstrate distinct weight distributions.

View on arXiv
Comments on this paper