ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02340
17
11

Static and Dynamic Fusion for Multi-modal Cross-ethnicity Face Anti-spoofing

5 December 2019
Ajian Liu
Zichang Tan
Xuan Li
Jun Wan
Sergio Escalera
G. Guo
Stan Z. Li
    CVBM
ArXivPDFHTML
Abstract

Regardless of the usage of deep learning and handcrafted methods, the dynamic information from videos and the effect of cross-ethnicity are rarely considered in face anti-spoofing. In this work, we propose a static-dynamic fusion mechanism for multi-modal face anti-spoofing. Inspired by motion divergences between real and fake faces, we incorporate the dynamic image calculated by rank pooling with static information into a conventional neural network (CNN) for each modality (i.e., RGB, Depth and infrared (IR)). Then, we develop a partially shared fusion method to learn complementary information from multiple modalities. Furthermore, in order to study the generalization capability of the proposal in terms of cross-ethnicity attacks and unknown spoofs, we introduce the largest public cross-ethnicity Face Anti-spoofing (CASIA-CeFA) dataset, covering 3 ethnicities, 3 modalities, 1607 subjects, and 2D plus 3D attack types. Experiments demonstrate that the proposed method achieves state-of-the-art results on CASIA-CeFA, CASIA-SURF, OULU-NPU and SiW.

View on arXiv
Comments on this paper