ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02580
12
23

Collective Learning

5 December 2019
Francesco Farina
    FedML
ArXivPDFHTML
Abstract

In this paper, we introduce the concept of collective learning (CL) which exploits the notion of collective intelligence in the field of distributed semi-supervised learning. The proposed framework draws inspiration from the learning behavior of human beings, who alternate phases involving collaboration, confrontation and exchange of views with other consisting of studying and learning on their own. On this regard, CL comprises two main phases: a self-training phase in which learning is performed on local private (labeled) data only and a collective training phase in which proxy-labels are assigned to shared (unlabeled) data by means of a consensus-based algorithm. In the considered framework, heterogeneous systems can be connected over the same network, each with different computational capabilities and resources and everyone in the network may take advantage of the cooperation and will eventually reach higher performance with respect to those it can reach on its own. An extensive experimental campaign on an image classification problem emphasizes the properties of CL by analyzing the performance achieved by the cooperating agents.

View on arXiv
Comments on this paper