ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02751
15
11

Revisiting Few-Shot Learning for Facial Expression Recognition

5 December 2019
Anca-Nicoleta Ciubotaru
A. Devos
Behzad Bozorgtabar
Jean-Philippe Thiran
M. Gabrani
    CVBM
ArXivPDFHTML
Abstract

Most of the existing deep neural nets on automatic facial expression recognition focus on a set of predefined emotion classes, where the amount of training data has the biggest impact on performance. However, in the standard setting over-parameterised neural networks are not amenable for learning from few samples as they can quickly over-fit. In addition, these approaches do not have such a strong generalisation ability to identify a new category, where the data of each category is too limited and significant variations exist in the expression within the same semantic category. We embrace these challenges and formulate the problem as a low-shot learning, where once the base classifier is deployed, it must rapidly adapt to recognise novel classes using a few samples. In this paper, we revisit and compare existing few-shot learning methods for the low-shot facial expression recognition in terms of their generalisation ability via episode-training. In particular, we extend our analysis on the cross-domain generalisation, where training and test tasks are not drawn from the same distribution. We demonstrate the efficacy of low-shot learning methods through extensive experiments.

View on arXiv
Comments on this paper