ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.03673
12
23

Detection of False Positive and False Negative Samples in Semantic Segmentation

8 December 2019
Matthias Rottmann
Kira Maag
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
    UQCV
ArXivPDFHTML
Abstract

In recent years, deep learning methods have outperformed other methods in image recognition. This has fostered imagination of potential application of deep learning technology including safety relevant applications like the interpretation of medical images or autonomous driving. The passage from assistance of a human decision maker to ever more automated systems however increases the need to properly handle the failure modes of deep learning modules. In this contribution, we review a set of techniques for the self-monitoring of machine-learning algorithms based on uncertainty quantification. In particular, we apply this to the task of semantic segmentation, where the machine learning algorithm decomposes an image according to semantic categories. We discuss false positive and false negative error modes at instance-level and review techniques for the detection of such errors that have been recently proposed by the authors. We also give an outlook on future research directions.

View on arXiv
Comments on this paper