ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.04418
14
4

Deep Autoencoders with Value-at-Risk Thresholding for Unsupervised Anomaly Detection

9 December 2019
A. Akhriev
Jakub Mareˇcek
    UQCV
ArXivPDFHTML
Abstract

Many real-world monitoring and surveillance applications require non-trivial anomaly detection to be run in the streaming model. We consider an incremental-learning approach, wherein a deep-autoencoding (DAE) model of what is normal is trained and used to detect anomalies at the same time. In the detection of anomalies, we utilise a novel thresholding mechanism, based on value at risk (VaR). We compare the resulting convolutional neural network (CNN) against a number of subspace methods, and present results on changedetection net.

View on arXiv
Comments on this paper