ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05098
13
56

Memory-efficient Learning for Large-scale Computational Imaging -- NeurIPS deep inverse workshop

11 December 2019
Michael R. Kellman
Jonathan I. Tamir
E. Bostan
Michael Lustig
Laura Waller
    SupR
ArXivPDFHTML
Abstract

Computational imaging systems jointly design computation and hardware to retrieve information which is not traditionally accessible with standard imaging systems. Recently, critical aspects such as experimental design and image priors are optimized through deep neural networks formed by the unrolled iterations of classical physics-based reconstructions (termed physics-based networks). However, for real-world large-scale systems, computing gradients via backpropagation restricts learning due to memory limitations of graphical processing units. In this work, we propose a memory-efficient learning procedure that exploits the reversibility of the network's layers to enable data-driven design for large-scale computational imaging. We demonstrate our methods practicality on two large-scale systems: super-resolution optical microscopy and multi-channel magnetic resonance imaging.

View on arXiv
Comments on this paper