ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05458
14
33

Unsupervised Feature Selection based on Adaptive Similarity Learning and Subspace Clustering

10 December 2019
Mohsen Ghasemi Parsa
Hadi Zare
M. Ghatee
ArXivPDFHTML
Abstract

Feature selection methods have an important role on the readability of data and the reduction of complexity of learning algorithms. In recent years, a variety of efforts are investigated on feature selection problems based on unsupervised viewpoint due to the laborious labeling task on large datasets. In this paper, we propose a novel approach on unsupervised feature selection initiated from the subspace clustering to preserve the similarities by representation learning of low dimensional subspaces among the samples. A self-expressive model is employed to implicitly learn the cluster similarities in an adaptive manner. The proposed method not only maintains the sample similarities through subspace clustering, but it also captures the discriminative information based on a regularized regression model. In line with the convergence analysis of the proposed method, the experimental results on benchmark datasets demonstrate the effectiveness of our approach as compared with the state of the art methods.

View on arXiv
Comments on this paper