ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05475
128
38
v1v2v3 (latest)

Mean-Field Neural ODEs via Relaxed Optimal Control

11 December 2019
Jean-François Jabir
D. vSivska
Lukasz Szpruch
    MLT
ArXiv (abs)PDFHTML
Abstract

We develop a framework for the analysis of deep neural networks and neural ODE models that are trained with stochastic gradient algorithms. We do that by identifying the connections between high-dimensional data-driven control problems, deep learning and theory of statistical sampling. In particular, we derive and study a mean-field (over-damped) Langevin algorithm for solving relaxed data-driven control problems. A key step in the analysis is to derive Pontryagin's optimality principle for data-driven relaxed control problems. Subsequently, we study uniform-in-time propagation of chaos of time-discretised Mean-Field (overdamped) Langevin dynamics. We derive explicit convergence rate in terms of the learning rate, the number of particles/model parameters and the number of iterations of the gradient algorithm. In addition, we study the error arising when using a finite training data set and thus provide quantitive bounds on the generalisation error. Crucially, the obtained rates are dimension-independent. This is possible by exploiting the regularity of the model with respect to the measure over the parameter space (relaxed control).

View on arXiv
Comments on this paper