ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.06307
12
98

High-Dimensional Granger Causality Tests with an Application to VIX and News

13 December 2019
Andrii Babii
Eric Ghysels
Jonas Striaukas
ArXivPDFHTML
Abstract

We study Granger causality testing for high-dimensional time series using regularized regressions. To perform proper inference, we rely on heteroskedasticity and autocorrelation consistent (HAC) estimation of the asymptotic variance and develop the inferential theory in the high-dimensional setting. To recognize the time series data structures we focus on the sparse-group LASSO estimator, which includes the LASSO and the group LASSO as special cases. We establish the debiased central limit theorem for low dimensional groups of regression coefficients and study the HAC estimator of the long-run variance based on the sparse-group LASSO residuals. This leads to valid time series inference for individual regression coefficients as well as groups, including Granger causality tests. The treatment relies on a new Fuk-Nagaev inequality for a class of τ\tauτ-mixing processes with heavier than Gaussian tails, which is of independent interest. In an empirical application, we study the Granger causal relationship between the VIX and financial news.

View on arXiv
Comments on this paper