ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.06987
59
14
v1v2 (latest)

On the Generalization Properties of Minimum-norm Solutions for Over-parameterized Neural Network Models

15 December 2019
E. Weinan
Chao Ma
Lei Wu
ArXiv (abs)PDFHTML
Abstract

We study the generalization properties of minimum-norm solutions for three over-parametrized machine learning models including the random feature model, the two-layer neural network model and the residual network model. We proved that for all three models, the generalization error for the minimum-norm solution is comparable to the Monte Carlo rate, up to some logarithmic terms, as long as the models are sufficiently over-parametrized.

View on arXiv
Comments on this paper