ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.08804
13
467

SynSin: End-to-end View Synthesis from a Single Image

18 December 2019
Olivia Wiles
Georgia Gkioxari
Richard Szeliski
Justin Johnson
    3DV
ArXivPDFHTML
Abstract

Single image view synthesis allows for the generation of new views of a scene given a single input image. This is challenging, as it requires comprehensively understanding the 3D scene from a single image. As a result, current methods typically use multiple images, train on ground-truth depth, or are limited to synthetic data. We propose a novel end-to-end model for this task; it is trained on real images without any ground-truth 3D information. To this end, we introduce a novel differentiable point cloud renderer that is used to transform a latent 3D point cloud of features into the target view. The projected features are decoded by our refinement network to inpaint missing regions and generate a realistic output image. The 3D component inside of our generative model allows for interpretable manipulation of the latent feature space at test time, e.g. we can animate trajectories from a single image. Unlike prior work, we can generate high resolution images and generalise to other input resolutions. We outperform baselines and prior work on the Matterport, Replica, and RealEstate10K datasets.

View on arXiv
Comments on this paper