29
11

Estimation of Smooth Functionals in Normal Models: Bias Reduction and Asymptotic Efficiency

Abstract

Let X1,,XnX_1,\dots, X_n be i.i.d. random variables sampled from a normal distribution N(μ,Σ)N(\mu,\Sigma) in Rd{\mathbb R}^d with unknown parameter θ=(μ,Σ)Θ:=Rd×C+d,\theta=(\mu,\Sigma)\in \Theta:={\mathbb R}^d\times {\mathcal C}_+^d, where C+d{\mathcal C}_+^d is the cone of positively definite covariance operators in Rd.{\mathbb R}^d. Given a smooth functional f:ΘR1,f:\Theta \mapsto {\mathbb R}^1, the goal is to estimate f(θ)f(\theta) based on X1,,Xn.X_1,\dots, X_n. Let \Theta(a;d):={\mathbb R}^d\times \Bigl\{\Sigma\in {\mathcal C}_+^d: \sigma(\Sigma)\subset [1/a, a]\Bigr\}, a\geq 1, where σ(Σ)\sigma(\Sigma) is the spectrum of covariance Σ.\Sigma. Let θ^:=(μ^,Σ^),\hat \theta:=(\hat \mu, \hat \Sigma), where μ^\hat \mu is the sample mean and Σ^\hat \Sigma is the sample covariance, based on the observations X1,,Xn.X_1,\dots, X_n. For an arbitrary functional fCs(Θ),f\in C^s(\Theta), s=k+1+ρ,k0,ρ(0,1],s=k+1+\rho, k\geq 0, \rho\in (0,1], we define a functional fk:ΘRf_k:\Theta \mapsto {\mathbb R} such that \begin{align*} & \sup_{\theta\in \Theta(a;d)}\|f_k(\hat \theta)-f(\theta)\|_{L_2({\mathbb P}_{\theta})} \lesssim_{s, \beta} \|f\|_{C^{s}(\Theta)} \biggr[\biggl(\frac{a}{\sqrt{n}} \bigvee a^{\beta s}\biggl(\sqrt{\frac{d}{n}}\biggr)^{s} \biggr)\wedge 1\biggr], \end{align*} where β=1\beta =1 for k=0k=0 and β>s1\beta>s-1 is arbitrary for k1.k\geq 1. This error rate is minimax optimal and similar bounds hold for more general loss functions. If d=dnnαd=d_n\leq n^{\alpha} for some α(0,1)\alpha\in (0,1) and s11α,s\geq \frac{1}{1-\alpha}, the rate becomes O(n1/2).O(n^{-1/2}). Moreover, for s>11α,s>\frac{1}{1-\alpha}, the estimators fk(θ^)f_k(\hat \theta) is shown to be asymptotically efficient. The crucial part of the construction of estimator fk(θ^)f_k(\hat \theta) is a bias reduction method studied in the paper for more general statistical models than normal.

View on arXiv
Comments on this paper