ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09260
20
15

Deep Reinforcement Learning for Motion Planning of Mobile Robots

19 December 2019
Leonid Butyrev
Thorsten Edelhäußer
Christopher Mutschler
ArXivPDFHTML
Abstract

This paper presents a novel motion and trajectory planning algorithm for nonholonomic mobile robots that uses recent advances in deep reinforcement learning. Starting from a random initial state, i.e., position, velocity and orientation, the robot reaches an arbitrary target state while taking both kinematic and dynamic constraints into account. Our deep reinforcement learning agent not only processes a continuous state space it also executes continuous actions, i.e., the acceleration of wheels and the adaptation of the steering angle. We evaluate our motion and trajectory planning on a mobile robot with a differential drive in a simulation environment.

View on arXiv
Comments on this paper