ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09323
43
12
v1v2 (latest)

Normalizing flows for deep anomaly detection

19 December 2019
Artem Sergeevich Ryzhikov
M. Borisyak
Andrey Ustyuzhanin
D. Derkach
ArXiv (abs)PDFHTML
Abstract

Anomaly detection for complex data is a challenging task from the perspective of machine learning. In this work, weconsider cases with missing certain kinds of anomalies in the training dataset, while significant statistics for the normal class isavailable. For such scenarios, conventional supervised methods might suffer from the class imbalance, while unsupervised methodstend to ignore difficult anomalous examples. We extend the idea of the supervised classification approach for class-imbalanceddatasets by exploiting normalizing flows for proper Bayesian inference of the posterior probabilities.

View on arXiv
Comments on this paper